Abstract

The main purpose of this study is to model one-dimensional, premixed, laminar, burner-stabilized, fuel-rich n-heptane flame to understand its combustion characteristics. Detailed chemical kinetic modeling technique was used to obtain more information about the formation nature of emissions in n-heptane flame. A detailed chemical kinetic mechanism was generated by combining several mechanisms from the literature that related with possible products of fuel-rich n-heptane combustion. The mechanism consists of 4185 reactions and 893 species. Validations of the mechanism were done by species mole fractions of premixed laminar flames and jet stirred reactors, and ignition delay times in shock tubes. A detailed investigation of the n-heptane flame was carried out using rate of production and reaction pathway analyses. Propargyl radical (C3H3), vinylacetylene (C4H4) and acetylene (C2H2) were found as the main precursors of benzene formation. The mechanism was able to predict most of the major, minor, and trace species up to four-fused aromatic rings formed in the flame. A skeletal mechanism was also generated using Directed Relation Graph with Error Propagation (DRGEP) method. It consists of 1879 reactions and 359 species. The skeletal mechanism was in a good agreement with the detailed mechanism on the species mole fraction predictions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call