Abstract

Thin-film-based image sensors feature a thin-film photodiode (PD) monolithically integrated on CMOS readout circuitry. They are getting significant attention as an imaging platform for wavelengths beyond the reach of Si PDs, i.e., for photon energies lower than 1.12 eV. Among the promising candidates for converting low-energy photons to electric charge carriers, lead sulfide (PbS) colloidal quantum dot (CQD) photodetectors are particularly well suited. However, despite the dynamic research activities in the development of these thin-film-based image sensors, no in-depth study has been published on their imaging characteristics. In this work, we present an elaborate analysis of the performance of our short-wave infrared (SWIR) sensitive PbS CQD imagers, which achieve external quantum efficiency (EQE) up to 40% at the wavelength of 1450 nm. Image lag is characterized and compared with the temporal photoresponsivity of the PD. We show that blooming is suppressed because of the restricted pixel-to-pixel movement of the photo-generated charge carriers within the bottom transport layer (BTL) of the PD stack. Finally, we perform statistical analysis of the activation energy for CQD by dark current spectroscopy (DCS), which is an implementation of a well-known methodology in Si-based imagers for defect engineering to a new class of imagers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call