Abstract

Sufficient levels of thermal, electrical, mechanical, or electrochemical abuse can cause thermal runaway in lithium-ion batteries, leading to the release of electrolyte vapor, combustible gas mixtures, and high-temperature particles. Particle emissions due to thermal failure of batteries may cause serious pollution of the atmosphere, water sources, and soil as well as enter the human biological chain through crops, posing a potential threat to human health. Furthermore, high-temperature particle emissions may ignite the flammable gas mixtures produced during the thermal runaway process, resulting in combustion and explosions. This research focused on determining the particle size distribution, elemental composition, morphology, and crystal structure of particles released from different cathode batteries after thermal runaway. Accelerated adiabatic calorimetry tests were performed on a fully charged Li(Ni0.3Co0.3Mn0.3)O2 battery (NCM111), Li(Ni0.5Co0.2Mn0.3)O2 battery (NCM523), and Li(Ni0.6Co0.2Mn0.2)O2 battery (NCM622). Results of all three batteries indicate that particles with a diameter less than or equal to 0.85 mm exhibit an increase in volume distribution followed by a decrease in volume distribution as the diameter increases. F, S, P, Cr, Ge, and Ge were detected in particle emissions with mass percentages ranging from 6.5% to 43.3%, 0.76–1.20%, 2.41–4.83%,1.8–3.7%, and 0–0.14%, respectively. When present in high concentrations, these may have negative impacts on human health and the environment. In addition, the diffraction patterns of the particle emissions were approximately the same for NC111, NCM523, and NCM622, with emissions primarily composed of Ni/Co elemental, graphite, Li2CO3, NiO, LiF, MnO, and LiNiO2. This study can provide important insights into the potential environmental and health risks associated with particle emissions from thermal runaway in lithium-ion batteries

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.