Abstract

While numerous papers have been published according to the binary surfactant mixtures, only a few articles provide deeper information on the composition dependence of the micellization, and even less work attempts to apply the enhanced feature of the mixed micelles. The most important parameter of the self-assembled surfactants is the critical micelle concentration (cmc), which quantifies the tendency to associate, and provides the Gibbs energy of micellization. Several techniques are known for determining the cmc, but the isothermal titration calorimetry (ITC) can be used to measure both cmc and enthalpy change (ΔmicH) accompanying micelle formation. Outcomes of our calorimetric investigations were evaluated using a self-developed routine for handling ITC data and the thermodynamic parameters of mixed micelle formation were obtained from the nonlinear modelling of temperature- and composition- dependent enthalpograms. In the investigated temperature and micelle mole fractions interval, we observed some intervals where the cmc is lower than the ideal mixing model predicted value. These equimolar binary surfactant mixtures showed higher solubilization ability for poorly water-soluble model drugs than their individual compounds. Thus, the rapid and fairly accurate calorimetric analysis of mixed micelles can lead to the successful design of a nanoscale drug carrier.

Highlights

  • Surfactants have been part of our everyday lives for nearly two thousand years, and have been an increasingly used family of compounds in our modern society since the Industrial Revolution [1]

  • We were able to determine the cmc of both individual surfactants and mixtures, so we had the opportunity to calculate the temperature dependence of the thermodynamic parameters and determine their standard deviation

  • We found that the equimolar binary surfactant mixtures showed higher solubilization capacity for poorly water-soluble model drugs than their individual compounds

Read more

Summary

Introduction

Surfactants have been part of our everyday lives for nearly two thousand years, and have been an increasingly used family of compounds in our modern society since the Industrial Revolution [1]. Due to their unique molecular structure, in addition to their commonly known detergent properties, they are widely used as solubilizing [2], stabilizing [3] and emulsifying [4] industrial chemicals and nanomaterials, yet more than half of the amount produced goes to households as a detergent. Despite international regulations to protect our environment, their transport into aquatic life remains a continuous risk, so reducing the quantity produced through applied surfactants is one of today’s important technological challenges [7,8]. 4.0/).

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call