Abstract
Catcher bearings (CBs) provide backup protection for rotating machines with active magnetic bearings (AMBs). The CBs are required in the event of an AMB failure or high transient loads. Numerical simulations of a rotor drop on CBs in flywheel energy storage system are conducted with a detailed CB model which includes a Hertzian load–deflection relationship between mechanical contacts, speed-and-preload-dependent bearing stiffness due to centrifugal force, and a Palmgren's drag friction torque. The transient simulation results show the rotor shaft response variations with the design parameters: shaft/bearing friction coefficients, axial preload, support damping of damper liner, and side loads from magnetic bearings. The results reveal that friction coefficients, support damping, and side loads are critical parameters to satisfy CB design objectives and prevent backward (super) whirl.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.