Abstract
This paper presents a novel framework to recover detailed avatar from a single image. It is a challenging task due to factors such as variations in human shapes, body poses, texture, and viewpoints. Prior methods typically attempt to recover the human body shape using a parametric-based template that lacks the surface details. As such resulting body shape appears to be without clothing. In this paper, we propose a novel learning-based framework that combines the robustness of the parametric model with the flexibility of free-form 3D deformation. We use the deep neural networks to refine the 3D shape in a Hierarchical Mesh Deformation (HMD) framework, utilizing the constraints from body joints, silhouettes, and per-pixel shading information. Our method can restore detailed human body shapes with complete textures beyond skinned models. Experiments demonstrate that our method has outperformed previous state-of-the-art approaches, achieving better accuracy in terms of both 2D IoU number and 3D metric distance.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE transactions on pattern analysis and machine intelligence
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.