Abstract

With the developing technologies in the aviation, the transition to more electrical systems is increasing day by day. For this reason, research on the development of batteries has accelerated. Nowadays, Lithium ion (Li-ion) batteries are more widely preferred due to their energy-to-weight ratio and advantages such as having a lower self-discharge rate when not working compared to other battery technologies. Batteries convert the stored chemical energy into electrical energy and heat is released as a result of the chemical reactions. The heat released negatively affects the battery's lifespan, charging/discharging time and battery output voltage. The battery must be modeled correctly to see these negative effects and intervene in time. In this way, negative situations that may occur in the battery can be intervened at the right time without any incident. 
 In this study, the unmanned aerial vehicle (UAV) is powered by Li-ion batteries. It is simulated in Matlab/Simulink environment using the electrical equivalent circuit. A detailed model is created, taking into account temperature, state of charge (SoC), cell dynamics and operating functions. To estimate state of health (SoH) of the battery, resistance values must be known. Resistance and capacity values in the equivalent circuit of the Li-ion battery are obtained with the help of the simulation model. So, the SoH of the Li-ion batteries can be accurately predicted with the results obtained.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call