Abstract

Organo-modified layered silicates (OMLSs) can largely improve mechanical properties of Thermoplastic polyurethanes (TPUs) as well as affect their microdomain morphology. Nanocomposite TPU containing OMLSs were prepared by melt blending at different concentrations. The addition of OMLS has both induced variation in enthalpy of melting of hard and soft phases, and influenced the glass transition temperature of soft domains, as result of the microdomain phase segregation measured by means of fourier transform infrared spectroscopy (FT-IR). Small angle X-ray scattering (SAXS) analysis has shown that the mean distance between hard domains was mostly unaffected by the filler. However, its distribution broadened with the increasing concentration of the OMLSs, resulting in increased extent of the hard domain interface. The storage modulus of TPU nanocomposites incremented with the silicate content, while the dynamic strain scan tests showed pronounced non linear viscoelastic behavior. The analysis of morphological data obtained by SAXS and FT-IR measurements were correlated to thermal and dynamic mechanical properties of TPU samples suggesting a crucial role of the soft domains interface. The storage modulus and loss tangent of TPU nanocomposites were found to increase with the increasing of the interface area of soft domains with both hard domains and OMLS stacks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.