Abstract

An airlift pump is a vertical tube that utilizes the buoyant effects of a gas to lift a liquid. Unlike a standard mechanical pump, the liquid flow rate through the airlift pump is not directly controlled; rather, it depends on the supplied gas flow rate, the tube length and diameter, and the relative height of the liquid supply free surface (submergence ratio). The present study uses the commercial CFD code ANSYS CFX to model the isothermal, 3D, transient flow in an airlift pump using water and air. The model applies pressure boundary conditions at both ends of the tube and specifies the mass flow rate of air through multiple openings in the side of the tube. The bottom of the tube is an inlet of water only and the outlet is a two-phase flow opening. A time-dependent, homogeneous, VOF two-phase RANS CFD modelling approach is used with the air treated as an ideal gas. This work found that a complete 3D domain was necessary for consistent prediction of the airlift performance and physically realistic two-phase flow structures. Statistical analysis of the two-phase flow structures was applied to characterize airlift pump instability and better understand the physics of the airlift pump.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.