Abstract
Prediction of the aerodynamic stability of rotor blades at the last stage of steam turbines is of great importance and widely studied. Considering the large span and low natural frequency of these blades, flow at the tip region has a remarkable effect on blade flutter characteristics. However, the transonic tip-clearance flow in these blades has a complex structure of vortices. To obtain a deep understanding of the transonic tip-clearance flow structure in steam turbines, the Detached-Eddy Simulation (DES) is applied in this paper. DES is a hybrid LES/RANS method that activates LES in specified flow regions and applies URANS in other regions of the flow field. As far as we are aware, the tip-clearance flow structure of real-scale last stage steam turbine by high-fidelity numerical method had not been much analyzed in open literature. In this paper, the transonic tip-clearance flow structure in modern last stage of steam turbines is analyzed by both URANS and DES approaches. The open steam turbine model designed by Durham University is chosen as the research model. The flow solver applied is the commercial software ANSYS CFX. From the DES result, the tip leakage vortex and the induced vortices are presented. Based on the comparison between tip-clearance flow structure captured by the two approaches, the URANS method is not able to resolve all induced vortices. Therefore, the distribution of aerodynamic loading on the blade surface is different between URANS and DES results. The present study serves as a basis for investigating the influence of the tip-clearance flow structure on blade aeroelasticity.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.