Abstract

This paper uses results from detached eddy simulation to reveal the dynamics of large-scale coherent eddies in the flow around a circular pier with an equilibrium scour hole. This is important for the sediment transport because the local scour process is controlled to a large extent by the large-scale coherent structures present in the near-bed region. The present paper investigates the dynamics of these coherent structures, their interactions and their role in entraining sediment in the later stages of the scour process when the horseshoe vortex system is stabilized by the presence of a large scour hole. The pier Reynolds number was 2.06× 105 , outside the range of well-resolved large-eddy simulation (LES). Additionally, scale effects are investigated based on comparison with LES results obtained at a much lower Reynolds number of 16,000 in a previous investigation. The paper provides a detailed study of the dynamics of the main necklace vortices of the horseshoe vortex system, including an investigation...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.