Abstract

Tumor-dependent glucose and glutamine metabolisms are essential for maintaining survival, while the accordingly metabolic suppressive therapy is limited by the compensatory metabolism and inefficient delivery efficiency. Herein, a functional metal-organic framework (MOF)-based nanosystem composed of the weakly acidic tumor microenvironment-activated detachable shell and reactive oxygen species (ROS)-responsive disassembledMOF nanoreactor core is designed to co-load glycolysis and glutamine metabolism inhibitors glucose oxidase (GOD) and bis-2-(5-phenylacetmido-1,2,4-thiadiazol-2-yl) ethyl sulfide (BPTES) for tumor dual-starvation therapy. The nanosystem excitingly improves tumor penetration and cellular uptake efficiency via integrating the pH-responsive size reduction and charge reversal and ROS-sensitive MOF disintegration and drug release strategy. Furthermore, the degradation of MOF and cargoes release can be self-amplified via additional self-generation H2 O2 mediated by GOD. Last, the released GOD and BPTES collaboratively cut off the energy supply of tumors and induce significant mitochondrial damage and cell cycle arrest via simultaneous restriction of glycolysis and compensatory glutamine metabolism pathways, consequently realizing the remarkable triple negative breast cancer killing effect in vivo with good biosafety via the dual starvation therapy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.