Abstract
The development of detachable acoustofluidic devices is of great significance for disposable and cost-effective biological and chemical analysis. In this work, a highly integrated holographic acoustofluidic device based on acoustic holography and microfluidic chips was proposed to realize the modulation of striped acoustic field in microchannels. In the device, the chip is disposable and the transducer is reused. The acoustic hologram was fabricated by injection molding for efficient manufacturing and low cost. In addition, a multiphysics simulation model for holographic acoustofluidic chip was established to analyze the effect of acoustic field modulation and particle manipulation. Results showed that the acoustic pressure inside the microchannel of the device exhibits a clear striped distribution, and a linear arrangement of particles parallel and inclined to the extension direction of the channel wall can be achieved within 2 s. The distance between the arrangement lines in the target region was controlled at around 60 μm. The investigation of thermal effect validates the biocompatibility. The designed holographic acoustofluidic device presents a promising option for the manipulation, arrangement, and sorting of cells and other particles in microchannels.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.