Abstract
Nonribosomal peptide synthetases assemble a considerable number of structurally complex peptides of pharmacological importance. This turns them into important biosynthetic machineries for peptide diversification by engineering approaches. To date, manifold reprogramming approaches focus on employing module and domain exchanges, or the engineering of domains responsible for amino acid recognition. In this work, we present an engineering strategy for the manipulation of product assembly modes by fusing iterative fungal cyclodepsipeptide synthetases. The reassignment of terminal condensation domains as canonical condensation domains induces a switch from an exclusively iterative into a mixed linear/iterative peptide assembly mode. In the heterologous host E. coli we thus produced in vivo novel hybrid cyclodepsipeptides with altered structural symmetry. Our findings contribute a new experimental set of nonribosomal peptide synthetase reprogramming to the engineering toolbox for peptide structure diversification.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.