Abstract
In order to give full play to the alkaline neutralization value of carbide slag and reduce the environmental hazards of carbide slag, it is of great practical significance to study the resource utilization of carbide slag. The adsorption of sulfur compounds on carbide slag was studied in the laboratory, and the process parameters of carbide slag desulfurization were explored and optimized. The specific surface area, pore distribution, and other physicochemical parameters were analyzed by XRD and SEM, which explained the changes of products and carbide slag before and after desulfurization. The test results show that carbide slag and limestone have almost the same desulfurization effect. The kinetics of carbide slag desulfurization process conforms to pseudo-first-order kinetics, and the sulfur content of calcium carbide slag reaches to 1000 mgSO2·g-1. A project demonstration was carried out in the gold smelting Tielu Plant of Zhenyuan Huashuo Precious Metals Development Co., Ltd., in Yunnan. The results of the 2-year demonstration project showed that the desulphurization efficiency of the four-stage series desulphurization tower exceeds 95%. The concentration of sulfur dioxide in the discharged flue gas is reduced to less than 20mg·m-3, which meets the requirements of ultra-low emission standard in China. Therefore, whether from theoretical research or engineering practice analysis, it is feasible to replace limestone with calcium carbide slag for flue gas desulfurization. The paper also discusses the problems existing in the demonstration project, and provides a new idea of "using waste to treat waste" in order to solve the problem of carbide slag disposal.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.