Abstract

Incineration of sludge can be an effective method to minimise waste whilst producing useful heat. However, incineration can cause secondary pollution issues due to the emission of SO2, therefore a set of experiments of sludge incineration in a bubble bed furnace were conducted with limestone addition to study desulfurization of sludge incineration flue gas. As expected, over 93% emission of SO2 was reduced with limestone addition, and that of CO and NOx were increased and decreased respectively when the fuel feeding rate raised. The distribution of fly ash was also increased by raising the fuel feeding rate due to increasing fragmentation of the ash. However, distributions of PM2.5 and heavy metals in submicron particles have dramatically increased with limestone desulfurization. The mechanism was revealed by SEM and EDS statistical analysis, indicating that the reaction between aluminosilicate and calcium made particles agglomerate and eutectic mixtures form, these larger ash particles were found to divide between collection as cyclone ash and fragmentation into finer particles that bypassed the cyclone. Those fine particles provided more surface area for heavy metal condensation. Furthermore, it was found that the reaction mechanism for semi-volatile metals involved them being released from the sludge and forming PM1 particles due to the vaporization-condensation mechanism, leading to higher emission of PM1 and distribution of heavy metals in PM1. Thus, it should be considered that there may actually be higher emission risks of PM and heavy metal emissions when aiming to desulfurize a flue gas using Ca-based minerals in certain circumstances.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.