Abstract

We report a simple and efficient transformation of thiol and thiocarbonylthio functional groups to bromides using stable and commercially available brominating reagents. This procedure allows for the quantitative conversion of a range of small molecule thiols (including primary, secondary and tertiary) to the corresponding bromides under mild conditions, as well as the facile chain-end modification of polystyrene (PS) homopolymers and block copolymers prepared by reversible addition-fragmentation chain transfer (RAFT) polymerization. Specifically, the direct chain-end bromination of PS prepared by RAFT was achieved, where the introduced terminal bromide remained active for subsequent modification or chain-extension using classical atom transfer radical polymerization (ATRP). This transformation sets the foundation for bridging RAFT and ATRP, two of the most widely used controlled radical polymerization (CRP) strategies, and enables the preparation of chain-end functionalized block copolymers not directly accessible using a single CRP technique.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.