Abstract

Desulfovibrio vulgaris can use lactate as an electron donor and accumulate hydrogen. Hydrogen can also be consumed as an electron donor when lactate is depleted or absent. The aim of this study was to determine whether D. vulgaris has an electron donor preference system between lactate and hydrogen and how this system is regulated. In order to be sure that D. vulgaris was grown under the same conditions except for electron donors, continuous growth mode was conducted and the optical density (600 nm) was kept constant. When 20 mmol/l lactate was the sole electron donor, it was depleted after 9 h of incubation while hydrogen was accumulated to 1,500 ppm. After that, the hydrogen level was decreased to and maintained at 400 ppm. When 1,200 ppm hydrogen was provided as the electron donor, the culture reached an OD of 0.2 after 24 h incubation and hydrogen was consumed to 600 ppm. When 1,200 ppm hydrogen and 20 mmol/l lactate were both present, the lactate was consumed during the first 9 h incubation and hydrogen was accumulated to 1,800 ppm. D. vulgaris used hydrogen as an electron donor after the lactate was depleted and the hydrogen level was decreased to 600 ppm. D. vulgaris has both pathways to utilize lactate and hydrogen as electron donors. It prefers lactate over hydrogen and the system is regulated by lactate starvation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call