Abstract

Strain JW/YJL-B18(T), a spore-forming, sulfate-reducing bacterium, was isolated from constructed wetland sediment. Cells were curved rods, 0.7-1.2 mum in diameter and 3-7 mum long. Despite being phylogenetically a member of the Gram-type-positive phylum Firmicutes, cells stained Gram-negative at all growth phases. Strain JW/YJL-B18(T) grew at 8-39 degrees C, with an optimum at 32-35 degrees C and no growth at 4 degrees C or below or at 42 degrees C or above. The pH(25 degrees C) range for growth was 5.7-8.2, with an optimum at pH(25 degrees C) 7.0-7.3, and no growth was detected at or below pH 5.2 or at or above pH 8.4. The salinity range for growth was 0-3 % (NaCl/KCl 9 : 1). Strain JW/YJL-B18(T) utilized as carbon and energy sources beef extract, yeast extract, formate, succinate, lactate, pyruvate, ethanol and toluene. Fumarate, sulfate, sulfite and thiosulfate were reduced in the presence of lactate. Arsenate (V) was not used as an electron acceptor. Strain JW/YJL-B18(T) showed no indication of growth under autotrophic conditions. The predominant cellular fatty acids were C(16 : 1) and C(16 : 0). The genomic DNA G+C content was 36.6 mol% (HPLC). 16S rRNA gene sequence analysis indicated that strain JW/YJL-B18(T) fell into the genus Desulfosporosinus, with Desulfosporosinus auripigmenti OREX-4(T) as its closest neighbour with a validly published name (97.9 % similarity). Based on molecular genetic evidence and physiological and biochemical characters including differences in the DNA G+C content, we propose to place strain JW/YJL-B18(T) (=DSM 17734(T) =ATCC BAA-1261(T)) as the type strain of a novel species, Desulfosporosinus youngiae sp. nov.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.