Abstract

Bone-resorbing osteoclasts exhibit polarized morphological structures such as actin rings, clear zones, and ruffled borders. To gain insight into the mechanism of bone-resorbing activity of osteoclast and to discover new types of anti-resorptive agents, we have screened for natural compounds that inhibit the bone-resorbing activity of osteoclast-like multinucleated cells (OCLs). Destruxin B (DestB) and E (DestE), cyclodepsipeptides, were found to inhibit pit formation without affecting osteoclast differentiation and survival. Destruxins reversibly induced morphological changes in OCLs in a dose-dependent manner (DestB, 0.2–1 μM; DestE, 0.01–0.05 μM) and inhibited pit formation. Destruxin-induced morphological changes were accompanied by disruption of the actin rings in OCLs. The formation of actin rings in OCLs after adhesion was also inhibited by destruxins. Electron microscopical analysis revealed that destruxin-treated OCLs on dentine slices have no prominent clear zones and ruffled borders. The effective concentrations of destruxins on the morphological changes were almost the same as those that inhibited bone resorption in organ culture system. These results suggest that the anti-resorptive effects of destruxins result from induction of a disorder of the morphological structures in polarized OCLs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call