Abstract

The electronic transmission coefficient of X-crown ether-Y (X = 3Y ;Y = 4, 5, and 6) have been investigated using density functional theory and Green’s function approximation incorporated with the Huckel method. The results illustrate unexpected role of the oxygen atoms to highly enhance charge transport in the crown ether molecules by moving the destructive quantum interferences (QI) close to the Fermi level. Such slight shifting creates a beneficial peak-valley pattern in the transmission spectra that facilitates the ON/OFF variation. Moreover, the length of the crown ether rings offers an insignificant impact on electronic transmission. Hence, we believe that these findings would deepen our understanding of QI patterns and exploit crown ether molecules more practically and efficiently in molecular devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.