Abstract

The presence of machining-induced white layer in the near-surface of critical aeroengine alloys has a detrimental effect on the lifetime of a component. Present techniques for identifying and characterizing white layer, such as optical microscopy and hardness testing, whilst effective, are destructive, costly and time-consuming. Non-destructive testing methods may, therefore, offer improvements to the process of white layer detection. This paper discusses the formation mechanisms and the defining physical properties of machining-induced white layers before offering a comprehensive review of the current state-of-the-art in both destructive and non-destructive testing methods for detecting this anomalous surface feature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.