Abstract

An observed plateau abundance of 7Li in metal-poor halo stars indicates its primordial origin. The 7Li abundances are about a factor of three smaller than that predicted in standard big bang nucleosynthesis (BBN) model. In addition, some of the stars possibly contain 6Li in abundances larger than standard BBN prediction. Particle models sometimes include heavy longlived colored particles which are confined in exotic strongly interacting massive particles (SIMPs). We have found reactions which destroy 7Be and 7Li during BBN in the scenario of BBN affected by a long-lived sub-strongly interactingmassive particle (sub-SIMP, X). The reactions are non radiative X captures of 7Be and 7Li which can operate if the X particle interacts with nuclei strongly enough to drive 7Be destruction but not strongly enough to form a bound state with 4He of relative angular momentum L = 1. The processes can be a cause of the 7Li problem. In this paper we suggest new possible reactions for 6Li production. Especially, a 6Li production through the deuteron capture of 4He bound to X can operate in the parameter region solving the 7Li problem.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call