Abstract

Pseudogap phenomena in strongly correlated systems have essential spatial length scale dependence [M.V. Sadovskii, Physics – Uspekhi 44 (2001) 515]. To merge pseudogap physics and strong electron correlations we generalize the dynamical-mean field theory (DMFT) [A. Georges, G. Kotliar, W. Krauth, M.J. Rozenberg, Rev. Mod. Phys. 68 (1996) 13]. Dependence on correlation length of pseudogap fluctuations via additional (momentum dependent) self-energy Σ k is included into conventional DMFT equations. The self-energy Σ k describes non-local dynamical correlations induced either by short-ranged collective SDW-like antiferromagnetic spin or CDW-like charge fluctuations [J. Schmalian, D. Pines, B. Stojkovic, Phys. Rev. B 60 (1999) 667; E.Z. Kuchinskii, M.V. Sadovskii, JETP 88 (1999) 347]. Weakly doped one-band Hubbard model with repulsive Coulomb interaction on a square lattice with nearest and next nearest neighbour hopping is numerically investigated within this generalized DMFT + Σ k approach [E.Z. Kuchinskii, I.A. Nekrasov, M.V. Sadovskii, JETP Lett. 82 (2005) 198; M.V. Sadovskii, I.A. Nekrasov, E.Z. Kuchinskii, Th. Prushke, V.I. Anisimov, Phys. Rev. B 72 (2005) 155105]. Both types of strongly correlated metals, namely (i) doped Mott insulator and (ii) the case of bandwidth W < U ( U – value of local Coulomb interaction) were considered. Energy dispersions, quasiparticle damping, spectral functions and ARPES spectra calculated within DMFT + Σ k, all show a pseudogap effects close to the Fermi level of quasiparticle band. Finally we demonstrate the qualitative picture of quasiparticle band dispersion, Fermi surface “destruction” and “Fermi arcs” formation due to pseudogap fluctuations, which agrees well with observations by ARPES.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.