Abstract
Metal-organic frameworks (MOFs), constructed from organic linkers and inorganic building blocks, are well-known for their high crystallinity, high surface areas, and high component tunability. The stability of MOFs is a key prerequisite for their potential practical applications in areas including storage, separation, catalysis, and biomedicine since it is essential to guarantee the framework integrity during utilization. However, MOFs are prone to destruction under external stimuli, considerably hampering their commercialization. In this Review, we provide an overview of the situations where MOFs undergo destruction due to external stimuli such as chemical, thermal, photolytic, radiolytic, electronic, and mechanical factors and offer guidelines to avoid unwanted degradation happened to the framework. Furthermore, we discuss possible destruction mechanisms and their varying derived products. In particular, we highlight cases that utilize MOF instability to fabricate varying materials including hierarchically porous MOFs, monolayer MOF nanosheets, amorphous MOF liquids and glasses, polymers, metal nanoparticles, metal carbide nanoparticles, and carbon materials. Finally, we provide a perspective on the utilization of MOF destruction to develop advanced materials with a superior hierarchy for various applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.