Abstract

Abstract With increasing worldwide incidence of toxic cyanobacterial blooms in bodies of water, cylindrospermopsin (CYN) has become a significant concern to public health and water management officials. In this study, the removal of CYN by UV-254 nm-mediated advanced oxidation processes (AOPs) was evaluated. Cylindrospermopsin, at an initial concentration of 1 μM, was significantly degraded, 75% at a UV fluence of 80 mJ cm−2, 100% at 20 mJ cm−2, and 100% at 40 mJ cm−2, by UV/H2O2, UV/S2O82−, and UV/HSO5− processes, respectively, at an initial oxidant dose of 1 mM. The calculated second-order rate constants of CYN with hydroxyl radicals, k OH/CYN, was 5.1 × 109 M−1 s−1 and with sulfate radicals, k SO 4 − / CYN , was 4.5 × 109 M−1 s−1. The observed pseudo-first-order reaction rate constant increased linearly with increasing initial oxidant concentration. The destruction of CYN by both radicals was inhibited by radical scavengers, such as natural organic matter (NOM) and alkalinity. The presence of transition metals in tap water samples appeared to enhance the treatment efficiency of CYN by UV/HSO5−. The ICP-MS analysis of the metals in the water samples, revealed copper residual of 40.6 ± 3.3 μg L−1 in tap water, and 13.6 and 8.1 μg L−1 in two natural water samples. Results of this study suggest that the presence of transition metals in natural water sources could be an important factor in AOPs. This study is a new and feasible approach to remove CYN as well as other organic contaminants from water resources.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.