Abstract

The destruction of low concentrations (<1000 ppm) of gas-phase carbon tetrachloride (CCl4) using a low-temperature, dielectric barrier/packed-bed corona reactor was studied. We compare, in particular, the destruction efficiencies using either borosilicate or zirconia oxide (ZrO2) packing materials in dry and moist air, and nitrogen buffer gases. Measurements of contaminant removal in the effluent gas were made at atmospheric pressure as a function of energy dissipated in the reactor. In dry N2, destruction of CCl4 was most efficient using ZrO2 beads, whereas, in dry air, contaminant removal was approximately equal for borosilicate glass and ZrO2. The presence of water in the gas stream reduced the CCl4 destruction efficiency under all conditions. This reduction was likely a synergistic effect that involves changes in the plasma density, scavenging of low energy secondary electrons, and possible surface passivation. Assuming the primary step in CCl4 destruction is dissociative electron attachment, an estimate of the average density of low energy electrons as a function of input energy was made. We relate the enhancement in CCl4 destruction using the ZrO2 beads in N2 to a slight increase in the number density of low energy secondary electrons. A discussion of the importance of energy density measurements and a useful phenomenological kinetic model consistent with the observed results are presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.