Abstract

In this study, we perform calculations and experimental studies of the destruction of composite impactors from a porous tungsten–nickel–iron–cobalt alloy with 10 wt % tungsten titanium carbide at high-speed impact with steel barriers. In ballistic tests over a wide range of velocities, there is a significant excess of the penetration depth of these impactors into steel barriers compared to the mass-dimensional analog of a tungsten–nickel–iron alloy with 90% tungsten content. Based on the analysis of crater morphology and the structure of impactor fragments after introduction into the obstacle, we assume that the impactor is “self-sharpened” by localizing plastic deformation, which reduces the effective interaction area and increases the penetration depth. To describe the destruction, we modified the mathematical model of a porous ideal elastic-plastic body with a complex structure with the possibility of considering the adiabatic shear mechanism during interaction between the impactor and the obstacle.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.