Abstract

It is common knowledge that macromolecular crystals are damaged by the X-rays they are exposed to during conventional data collection. One of the claims made about the crystallographic data collection now being collected using X-ray free-electron lasers (XFEL) is that they are unaffected by radiation damage. XFEL data sets are assembled by merging data obtained from a very large number of crystals, each of which is exposed to a single femtosecond pulse of radiation, the duration of which is so short that diffraction occurs before the damage done to the crystal has time to become manifest, i.e. "diffraction-before-destruction." However, recent theoretical studies have shown that many of the elemental electronic processes that ultimately result in the destruction of such crystals occur during a single pulse. It is predicted that the amplitudes of atomic scattering factor could be reduced by as much as 75% within the first 5 femtoseconds of such pulses, and that different atoms will respond in different ways. Experimental evidence is provided here that these predictions are correct.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.