Abstract
The amino acid sequence of a protein encodes the blueprint of its native structure. To predict the corresponding structural fold from the protein’s sequence is one of most challenging problems in computational biology. In this work, we introduce DESTINI (deep structural inference for proteins), a novel computational approach that combines a deep-learning algorithm for protein residue/residue contact prediction with template-based structural modelling. For the first time, the significantly improved predictive ability is demonstrated in the large-scale tertiary structure prediction of over 1,200 single-domain proteins. DESTINI successfully predicts the tertiary structure of four times the number of “hard” targets (those with poor quality templates) that were previously intractable, viz, a “glass-ceiling” for previous template-based approaches, and also improves model quality for “easy” targets (those with good quality templates). The significantly better performance by DESTINI is largely due to the incorporation of better contact prediction into template modelling. To understand why deep-learning accomplishes more accurate contact prediction, systematic clustering reveals that deep-learning predicts coherent, native-like contact patterns compared to co-evolutionary analysis. Taken together, this work presents a promising strategy towards solving the protein structure prediction problem.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Scientific Reports
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.