Abstract

Extracellular Ca reduces parathyroid hormone (PTH) levels through several mechanisms, but many details of the intracellular steps involved have been difficult to elucidate because of the lack of a suitable parathyroid cell model. The present studies utilized our Ca-responsive bovine parathyroid organoid culture system (pseudoglands) to examine PTH mRNA in intact parathyroid cells. Increasing medium calcium from 0.4 to 3.0 mM reduced PTH mRNA to 20-30% of basal by 16 h. Reducing medium Ca from 3.0 to 0.4 mM restored PTH mRNA levels over a 24-h period. PTH mRNA was also reduced by the calcimimetic R-568, confirming the role of the calcium-sensing receptor. PTH decay rates were determined by placing pseudoglands in either 0.4 or 3.0 mM Ca for 2 h and then blocking gene transcription. PTH mRNA remained stable for at least 24 h in pseudoglands incubated in 0.4 mM Ca, but fell gradually by 62% in the presence of 3.0 mM Ca. Blocking transcription prior to the addition of high-Ca medium dramatically blunted the Ca-induced degradation of PTH mRNA, indicating that acceleration of PTH mRNA decay by Ca requires gene transcription. Pharmacologic investigation of the signaling pathways involved indicated that the Ca-induced reduction of PTH mRNA did not involve MAP kinase, phospholipase D, or cyclic AMP. However, increasing cytosolic Ca with thapsigargin or the Ca ionophore A23187 decreased PTH mRNA levels. In summary, Ca-mediated destabilization of PTH mRNA requires gene transcription and involves increases in cytosolic Ca.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.