Abstract
Eukaryotic two-component signaling involves the His-Asp-His-Asp multistep phosphorelay (MSP). In Arabidopsis thaliana, cytokinin-mediated MSP signaling intermediates include histidine kinases (HKs), histidine phosphotransfer proteins (Hpts) and response regulators (RRs). The structure-function relationship of interaction between Hpt (e.g. AHP1) and RR (e.g. ARR4) is poorly understood. Using a homology model and yeast two-hybrid analysis, we identified key amino acids of ARR4 at the AHP1-ΔARR4((16-175)) interaction interface. Mutating them in Arabidopsis (arr3,4,5,6,8,9 hextuple mutant background) and performing root length assays provided functional relevance, and coimmunoprecipitation (coIP) assay provided biochemical evidence for the interaction. The homology model mimics crystal structures of Hpt-RR complexes. Mutating selected interface residues of ARR4 either abolished or destabilized the interaction. D45A and Y96A mutations weakened interaction with AHP1, and exhibited weaker rescue of root elongation in the hextuple mutants. CoIP analysis using cytokinin-treated transgenic Arabidopsis seedlings provided biochemical evidence for weakened AHP1-ARR4 interaction. The relevance of the selected residues for the interaction was further validated in two independent pairs of Hpt-RR proteins from Arabidopsis and rice (Oryza sativa). Our data provide evidence of a link between Hpt-RR interaction affinity and regulation of downstream functions of RRs. This establishes a structure-function relationship for the final step of a eukaryotic MSP signal cascade.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.