Abstract

The affinities of the exit (E) site of poly(U) or poly(A)-programmed Escherichia coli ribosomes for the respective cognate tRNA and a number of non-cognate tRNAs were determined by equilibrium titrations. Among the non-cognate tRNAs, the binding constants vary up to about tenfold (10 6 to 10 7 m −1 at 20 m m-Mg 2+) or 50-fold (10 m m-Mg 2+), indicating that codon-independent binding is modulated to a considerable extent by structural elements of the tRNA molecules other than the anticodon. Codon-anticodon interaction stabilizes tRNA binding in the E site approximately fourfold (20 m m-Mg 2+) or 20-fold (10 m m-Mg 2+), corresponding to ΔG ° values of −3 and −7 kJ/mol (0.7 and 1.7 kcal/mol), respectively. Thus, the energetic contribution of codon-anticodon interaction to tRNA binding in the E site appears rather small, particularly in comparison to the large effects on the binding in A and P sites and to the binding of complementary oligonucleotides or of tRNAs with complementary anticodons. This result argues against a role of the E site-bound tRNA in the fixation of the mRNA on the ribosome. In contrast, we propose that the role of the E site is to facilitate the release of the discharged tRNA during translocation by providing an intermediate, labile binding site for the tRNA leaving the P site. The lowering of both affinity and stability of tRNA binding accompanying the transfer of the tRNA from the P site to the E site is predominantly due to the labilization of the codon-anticodon interaction.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call