Abstract

We study the Saffman-Taylor instability in a granular suspension formed by micrometric beads immersed in a viscous liquid. When using an effective viscosity for the flow of the suspension in the Hele-Shaw cell to define the control parameter of the system, the results for the finger width of stable fingers are found to be close to the classical results of Saffman-Taylor. One observes, however, an early destabilization of the fingers that can be attributed to the discrete nature of the individual grains. Classically, the threshold of destabilization is linked to the noise in the cell and is thus difficult to quantify. We show that the grains represent a "controlled noise" and produce an initial perturbation of the interface with an amplitude proportional to the grain size. The finite amplitude instability mechanism proposed by Bensimon et al. allows us to link this perturbation to the value of the threshold observed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.