Abstract

A significant improvement in the dehydrogenation kinetics of the (LiNH(2) + LiH) system was obtained upon doping with elemental Si. Whilst, complete dehydrogenation of the (LiNH(2) + LiH) system requires more than 2 h, the time required for full dehydrogenation was reduced to less than 30 min by doping with elemental Si. It is observed that Si thermodynamically destabilises the system through the formation of novel intermediate phases resulting from the reaction of Si with both LiNH(2) and LiH. Such intermediate phases are also believed to enhance reaction kinetics by providing a path for accelerated dehydrogenation and the rapid release of hydrogen at the early stages of the reaction. It is believed that the dehydrogenation kinetics of the (LiNH(2) + LiH) system, which is controlled by the diffusion of H(-) from LiH and H(+) from LiNH(2), becomes independent of diffusion upon Si addition due to an enhanced concentration gradient in reactive ionic species.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call