Abstract

I describe DESPOTIC, a code to Derive the Energetics and SPectra of Optically Thick Interstellar Clouds. DESPOTIC represents such clouds using a one-zone model, and can calculate line luminosities, line cooling rates, and in restricted cases line profiles using an escape probability formalism. It also includes approximate treatments of the dominant heating, cooling, and chemical processes for the cold interstellar medium, including cosmic ray and X-ray heating, grain photoelectric heating, heating of the dust by infrared and ultraviolet radiation, thermal cooling of the dust, collisional energy exchange between dust and gas, and a simple network for carbon chemistry. Based on these heating, cooling, and chemical rates, DESPOTIC can calculate clouds' equilibrium gas and dust temperatures, equilibrium carbon chemical state, and time-dependent thermal and chemical evolution. The software is intended to allow rapid and interactive calculation of clouds' characteristic temperatures, identification of their dominant heating and cooling mechanisms, and prediction of their observable spectra across a wide range of interstellar environments. DESPOTIC is implemented as a Python package, and is released under the GNU General Public License.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.