Abstract
In the hypoglossal nucleus of wild-type mice, early mixed glycinergic-GABAergic inhibitory transmission becomes mainly glycinergic during postnatal maturation. In spastic mice (SPA), a model of human hyperekplexic syndrome, an insertion into the gene of the glycine receptor (GlyR) beta subunit results in a decreased accumulation of GlyRs at postsynaptic sites and an impaired glycinergic neurotransmission. In SPA mice displaying a mild phenotype (B6C3Fe strain), a compensatory process involving an increased aggregation of GABA(A) receptors (GABA(A)Rs) at postsynaptic sites was proposed to explain survival of mutant animals until adulthood. However, C57BL/6J strain SPA mice which express a lower amount of GlyR beta subunit die 2-3 weeks after birth, suggesting that GABAergic compensation does not necessarily take place. We performed a morphofunctional study of inhibitory synapses in the developing hypoglossal nucleus of C57BL/6J SPA mice. In this mutant, the inhibitory synaptic activity was mainly GABAergic. Accordingly, we observed a developmental loss of glycinergic presynaptic terminals and an increase in the density of GABAergic presynaptic terminals during the first two postnatal weeks. In addition, while C57BL/6J SPA mice displayed a strong impairment in GlyR aggregation at postsynaptic loci, the proportion of inhibitory presynaptic terminals facing diffuse GABA(A)Rs significantly increased during development. Our results suggest crosstalk between postsynaptic and presynaptic elements, leading to the developmental regulation of the presynaptic terminal neurotransmitter content according to the level of postsynaptic GlyR aggregation. They also indicate that GABAergic neurotransmission does not compensate for defects in GlyR postsynaptic aggregation leading to spastic syndrome in C57BL/6J SPA mice.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.