Abstract

Despeckling is an essential task in polarimetric synthetic aperture radar (PolSAR) image processing. Most existing filters developed for multi-temporal SAR images make use of either real or complex information. Real information refers to amplitude or intensity values, whereas complex information refers to complex covariance matrix (CCM) derived from either interferometric SAR (InSAR) or PolSAR data. The InSAR CCM is formed using images of the same polarimetric channel but acquired at different dates, and the PolSAR CCM contains information acquired simultaneously in different polarimetric channels. Therefore, these despeckling methods may present a good performance in some applications and scenes but fail in other cases, due to differences in input sources. In order to achieve a more robust result in all cases, we develop a method for multi-temporal polarimetric SAR data filtering based on tensor decomposition (TD-MPF), which aims at improving the identification of homogeneous pixels for spatially adaptive filtering. The key element of this approach consists of exploiting tensor theory to construct a new CCM that contains both polarimetric and interferometric information, as well as multi-temporal information for each pixel. The effectiveness of the proposed method and its performance are evaluated with simulated and real SAR data in comparison with several established methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.