Abstract
Two series of thiol-bridged dimeric desoxo molybdenum(IV) and tungsten(IV) bis(dithiolene) complexes, [Et(4)N](2)[M(IV)(2)(SR)(2)(mnt)(4)] [M = Mo, R = (1) -Ph, (2) -CH(2)Ph, (3) -CH(2)CH(3), (4) -CH(2)CH(2)OH; M = W, R = (1a) -Ph, (2a) -CH(2)Ph, (3a) -CH(2)CH(3), (4a) -CH(2)CH(2)OH] and one monomeric desoxo complex, [Et(4)N](2)[WIV(SPh)(2)(mnt)(2)] (5a) are reported. These complexes are diamagnetic, and crystal structures of each of the complex (except 5a) exhibits a dimeric {M(IV)(2)(SR)(2)} core without any metal-metal bond where each metal atom possesses hexa coordination. The M-SR distance ranges from 2.437 to 2.484 Angstrom in molybdenum complexes and from 2.418 to 2.469 Angstrom in tungsten complexes. These complexes display Mo-S(R)-Mo angles ranging from 92.84 degrees to 96.20 degrees in the case of 1-4 and W-S(R)-W angles ranging from 91.20 degrees to 96.25 degrees in the case of 1a-4a. Interestingly, both the series of Mo(IV) and W(IV) dimeric complexes respond to an unprecedented interconversion between the dimer and the corresponding hexacoordinated monomer upon change of pH. This pH-dependent interconversion establishes the fact that even the pentacoordinated Mo(IV) and W(IV) bis(dithiolene) moieties are forced to dimerize; these can easily be reverted back to the corresponding monomeric complex, reflecting the utility of dithiolene ligand in stabilizing the Mo(IV)/W(IV) moiety in synthesized complexes similar to the active sites present in native proteins.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.