Abstract

Compared with zinc (Zn) sorption, there is very little information on the effect of soil properties on Zn desorption from soils. In this study, desorption of native and added Zn from 7 Canterbury (NZ) soils was determined using a technique involving repeated equilibration of soil in 0·01 M Ca(NO3)2. The concentrations and patterns of desorption of both native and added Zn varied between the different soils. Greater concentrations of native Zn were desorbed from surface soils than from subsoils, and greater concentrations of added Zn were desorbed from subsoils than from their corresponding surface horizons. Correlation analysis showed that cation exchange capacity (CEC) and organic carbon (C) were the dominant soil variables contributing towards sorption or desorption of Zn. However, simple linear regressions involving CEC or organic C explained only 48–62% of the total variation in Zn sorption or desorption from the different soils. Multiple regression analysis indicated that cumulative native Zn desorption (expressed as percentage of DTPA-extractable Zn) was strongly related to CEC and the content of Mn oxides, which in combination explained 80% of the variability between soils. Regression analysis also showed that CEC plus Mn oxides and pH explained 91% of the variability in Zn sorption between the soils; whereas for added Zn desorbed (%), CEC plus pH and crystalline Al oxides explained 93% of variability in added Zn desorption.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.