Abstract

In this study, hydrogen peroxide (H2O2) was used to enhance the cation-exchange treatment for Cs+ desorption from clay minerals. Among various investigated clay minerals, hydrobiotite (HBT), which has interstratified layers of vermiculite and biotite, exhibited the highest Cs+ sorption capacity and the most favorable H2O2 activation because of its high Fe content. In X-ray diffraction analysis, HBT treated with H2O2 and 0.1 M Mg2+ showed substantial changes in its basal spacing, indicating expansion of the interlayer region induced by treatment of H2O2 and strongly hydrated divalent cations. In addition, more than 80% of the Cs+ was readily desorbed from HBT with 35% H2O2 solution and 0.1 M Mg2+ at room temperature. After three cycles under the same treatment conditions (35% H2O2 solution and 0.1 M Mg2+), approximately 99% removal of radioactive Cs+ was achieved. These results suggested that H2O2 treatment with solvated Mg2+ enhanced Cs+ desorption from HBT by altering the interlayer region through intercalation of hydrated divalent cations in conjunction with the H2O2 decomposition reaction.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call