Abstract

Fluoropezil (DC20) is a new selective acetylcholinesterase inhibitor, and it was developed for the treatment of Alzheimer's disease patients. In this study, a desorption electrospray ionization source coupling ion mobility mass spectrometry imaging (DESI/IMS-MSI) method was developed to explore the distribution of DC20 in brain tissue following oral administration. Rat brain coronal slices obtained 1 h and 3 h following drug dosing were used in the study. D6-DC20 was used as internal standard and sprayed by matrix sprayer on the brain slices to calibrate the matrix effect. Ion mobility separation was used to reduce the interference from background noise and the biological matrix. By optimizing DESI-MSI parameters for improved sensitivity, the limit of quantitation of the method was 1.45 pg/mm2 with a linear range from 1.45 to 72.7 pg/mm2. DESI-MSI data showed that DC20 could quickly enter and diffuse across whole brain and tended to be much more enriched in striatum than cerebral cortex and hippocampus, which was consistent with quantitative analysis using high-performance liquid chromatography-electrospray tandem mass spectrometry to measure DC20 concentration in each homogenized brain sub-region. The workflow of tissue imaging method optimization and strategy were established, and for the first time, the DESI-MSI technique and optimized method were used to explore the distribution characteristics of DC20 in rat brain, which could help elucidate pharmacological effect mechanisms and improve clinical outcomes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call