Abstract

The coalbed methane (CBM) desorption area is highly important in the placement of wells to produce an adequate working system. This paper develops a homogeneous seepage model of CBM that incorporates desorption and uses a finite-element method to obtain the pressure field in complex boundary cases influenced by adjacent wells. The pressure field is presented in a 2D and pseudo-3D form that visually demonstrates the shape of the pressure profile and the pressure expansion. A method of combined numerical computation and contour drawing technology is used to determine the CBM desorption area and pressure drop region. By analyzing the main factors that affect the CBM desorption region, we demonstrate that a higher value of critical desorption pressure yields a larger desorption area of the seam. The effect of the permeability is different from the value of the critical desorption. This effect is determined by the critical desorption pressure level and the intersection of pressure profiles with different permeabilities. Permeability anisotropy leads to a desorption area with an elliptical shape. We also demonstrate that a greater flux of methane will result in a greater desorption region, and the effects of the distance between wells and the desorption area are closely related to the permeability. The developed model is applied in a field case to predict the desorption area.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.