Abstract

Sterols are essential components of the cell membrane lipid bilayer that include molecules such as cholesterol and desmosterol, which are significantly found in the spermatozoa of several animal species. However, the presence of desmosterol in rabbit semen has never been investigated. The aims of this study were to characterize the sterol composition of subfractions of ejaculated rabbit semen and evaluate the in vitro effects of sterol on the spermatozoa acrosome reaction and motility. Two sterols, occurring prevalently in the free form (94.3%), were identified in whole semen collected from 10 fertile New Zealand White rabbits, specifically desmosterol (58.5% of total sterols) and cholesterol (35.9% of total sterols). Desmosterol was the predominant sterol found in all subfractions of rabbit semen, varying from 56.7% (in the prostatic secretory granules, PSGs) to 63.8% (in the seminal plasma). Spermatozoa contained an intermediate proportion of desmosterol (59.8%), which was asymmetrically distributed between the heads (52.0% of the total content of sterols) and the tails (81.8%). Results showed that both desmosterol and cholesterol can be transferred from the PSGs to the spermatozoa and are equally effective in inhibiting in vitro spermatozoa capacitation at a concentration higher than 1 mg L(-1). In contrast, neither desmosterol nor cholesterol had a significant effect on spermatozoa motility. Thus, it was concluded that, the various fractions of rabbit seminal fluid differ from each other in sterol composition and quantity, probably due to their different functional properties, and these fractions may undergo significant sterol changes depending on the stage of spermatozoa capacitation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.