Abstract

Desmosomes are one component of the intercellular junctional complex in epithelia. In cultures of epithelial cells, desmosome assembly can be regulated by modulating the calcium concentrations of the growth media. At present, very little is known about the intracellular signal transduction mechanisms that regulate desmosome assembly and disassembly in response to changing extracellular calcium concentrations. We have used inhibitors of protein kinases and phosphatases in a combined biochemical and morphological approach to analyze the role of protein phosphorylation in the assembly and disassembly of desmosomes in Madin-Darby canine kidney epithelial cells. Our results suggest that desmosomal proteins (desmoplakins I/II and desmoglein 1) are primarily phosphorylated on serine residues. Electron microscopic analyses of desmosome assembly upon induction of cell-cell contact, in the presence of protein kinase inhibitor, H-7, revealed an apparently normal assembly of desmosomes. However, complete disassembly of desmosomes was inhibited by H-7 upon removal of extracellular calcium. Under these conditions, although desmosomes split, desmosomal plaques and their associated cytokeratin filaments can not be internalized. In contrast, treatment of the cultures with okadaic acid (OA), an inhibitor of protein phosphatases, inhibited desmosome assembly but had no effect on disassembly. In addition, the inhibitory effect of okadaic acid on desmosome assembly was specific to this junction since we observed apparently normal tight junction and adherens junction in okadaic acid-treated cultures. These results suggest that assembly and disassembly of desmosomes may be regulated by extracellular Ca2+ via reversible protein phosphorylation involving both protein kinase and protein phosphatases.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.