Abstract

The ultimate cause of heart failure (HF) is not known to date. The cytoskeletal protein desmin is differentially modified and forms amyloid-like oligomers in HF. We postulated that desmin post-translational modifications (PTMs) could drive aberrant desmin aggregation in HF. Therefore, we identified these PTMs and investigated their impact on desmin amyloidogenicity in human and experimental HF. We detected increased levels of selectively phosphorylated and cleaved desmin in a canine pacing model of dyssynchronous HF (DHF) compared with either controls or animals treated with cardiac resynchronization therapy (CRT). This unique animal model combines clinically relevant features with the possibility of a partly rescued phenotype. We confirmed analogous changes in desmin modifications in human HF and identified two phosphorylation sites within a glycogen synthase kinase 3 (GSK3) consensus sequence. Desmin-positive oligomers were also increased in DHF hearts compared with controls. Their amyloid properties were decreased by treatment with CRT or an anti-amyloid small molecule. Finally, we confirmed GSK3's involvement with desmin phosphorylation using an in vitro model. Based on these findings, we postulate a new mechanism of cardiac toxicity based on the PTM-driven accumulation of desmin amyloid-like oligomers. Phosphorylation and cleavage as well as oligomers formation are reduced by treatment (CRT) indicating a relationship between the three. Finally, the decrease of desmin amyloid-like oligomers with CRT or small molecules points both to a general mechanism of HF based on desmin toxicity that is independent of protein mutations and to novel potential therapies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.