Abstract

Continuous friction compensation along with other modeling uncertainties is concerned in this paper, to result in a continuous control input, which is more suitable for controller implementation. To accomplish this control task, a novel continuously differentiable nonlinear friction model is synthesized by modifying the traditional piecewise continuous LuGre model, then a desired compensation version of the adaptive robust controller is proposed for precise tracking control of electrical-optical gyro-stabilized platform systems. As a result, the adaptive compensation and the regressor in the proposed controller will depend on the desired trajectory and on-line parameter estimates only. Hence, the effect of measurement noise can be reduced and then high control performance can be expected. Furthermore, the proposed controller theoretically guarantees an asymptotic output tracking performance even in the presence of modeling uncertainties. Extensively comparative experimental results are obtained to verify the effectiveness of the proposed control strategy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call