Abstract

One of the most important problems in the steelmaking process is an increase of the disposal slag mainly discharged from the dephosphorization process. In order to reduce the quantity of the disposal slag, the complete removal of silicon from molten pig iron is considered very effective before the dephosphorization in the pretreatment process. From this point of view, the desiliconization and the decarburization behavior of Fe-C-Si alloy with CO2 and O2 has been investigated in the present work. It is thermodynamically calculated that silicon should be oxidized in preference to carbon over 0.60 mass pct Si under the condition of sSiO2=aC=1 at 1573 K and is experimentally confirmed that silicon is only oxidized under the condition in actual. Even under the competitive region of desiliconizing and decarbonizing, under 0.60 mass pct Si, silicon is found to be oxidized down to about 0.1 mass pct Si in preference. The overall rate constants for the desiliconization and the decarburization are derived, and the value for the desiliconization is one order of magnitude larger than that for the decarburization. The influence of sulfur is also examined, and the retarding effect is not observed on the oxidation reactions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.