Abstract

The development of zinc-ion batteries with high energy density remains a great challenge due to the uncontrollable dendrite growth on their zinc metal anodes. Film anodes plated on the substrate have attracted increasing attention to alleviate these dendrite issues. Herein, we first point out that both the random crystal orientation and the low metal affinity of the substrate are important factors of zinc dendrite formation. Accordingly, the (1 0 1) fully preferred tin interface layer with high zinc affinity was fabricated by chemical tin plating on (1 0 0) oriented copper. This tin decorated copper substrate can realize high reversible zinc plating/stripping behavior, and full cell using this zinc plated substrate can be operated for more than 1000 cycles with high capacity retention (85.3%) and low electrochemical impedance. The proposed strategy can be also applied to lithium metal batteries, which demonstrates that the substrate orientation regulation and metal affinity design are the promising approaches to achieve dendrite-free metal anode and overcome the challenges of highly reactive metal anodes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.