Abstract

AbstractAdaptive Variational Quantum Dynamics (AVQD) algorithms offer a promising approach to providing quantum‐enabled solutions for systems treated within the purview of open quantum dynamical evolution. In this study, the unrestricted‐vectorization variant of AVQD is employed to simulate and benchmark various non‐unitarily evolving systems. Exemplification of how construction of an expressible ansatz unitary and the associated operator pool can be implemented to analyze examples such as the Fenna–Matthews–Olson complex (FMO) and even the permutational invariant Dicke model of quantum optics. Furthermore, an efficient decomposition scheme is shown for the ansatz used, which can extend its applications to a wide range of other open quantum system scenarios in near future. In all cases the results obtained are in excellent agreement with exact numerical computations that bolsters the effectiveness of this technique. The successful demonstrations pave the way for utilizing this adaptive variational technique to study complex systems in chemistry and physics, like light‐harvesting devices, thermal, and opto‐mechanical switches, to name a few.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.